یکی از مباحث جدید مطرح شده در علم ریاضیات، آشفتگی (chaos) است. این موضوع در محدوده دینامیک غیرخطی مورد بررسی قرار میگیرد. در دینامیک غیرخطی در صورتی که دو نقطه شروع مجاور داشته باشیم بعد از مدتی رفتار هر کدام از دو مسیر با یکدیگر متفاوت خواهد بود و نسبت به هم واگرا میشوند. در صورتی که اگر ما همین مساله را بصورت خطی در نظر میگرفتیم، این دو مسیر با همان اختلاف کم اولیه ادامه پیدا می کردند. در واقع اگر در یک سیستم غیرخطی نمودار رفتار شتاب - تغییر مکان که تحت عنوان phase space معرفی میشود را رسم کنیم و مورد ارزیابی قرار دهیم، امکان مشاهده رفتار آشفته برای ما میسر خواهد بود. شاید یکی از سادهترین جاهایی که در آن میتوان بحث آشفتگی را شناخت، در حل معادله x2 + x (1 / 1) 0 با استفاده از روش عددی نقطه ثابت باشد در واقع در حل این معادله...
یکی از مباحث جدید مطرح شده در علم ریاضیات، آشفتگی (chaos) است. این موضوع در محدوده دینامیک غیرخطی مورد بررسی قرار میگیرد. در دینامیک غیرخطی در صورتی که دو نقطه شروع مجاور داشته باشیم بعد از مدتی رفتار هر کدام از دو مسیر با یکدیگر متفاوت خواهد بود و نسبت به هم واگرا میشوند. در صورتی که اگر ما همین مساله را بصورت خطی در نظر میگرفتیم، این دو مسیر با همان اختلاف کم اولیه ادامه پیدا می کردند. در واقع اگر در یک سیستم غیرخطی نمودار رفتار شتاب - تغییر مکان که تحت عنوان phase space معرفی میشود را رسم کنیم و مورد ارزیابی قرار دهیم، امکان مشاهده رفتار آشفته برای ما میسر خواهد بود. شاید یکی از سادهترین جاهایی که در آن میتوان بحث آشفتگی را شناخت، در حل معادله x2 + x (1 / 1) 0 با استفاده از روش عددی نقطه ثابت باشد در واقع در حل این معادله از نگاشت (mapping) استفاده میشود پاسخهایی که از حل عددی این معادله بدست میآید برای مقادیر نزدیک